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Supplementary text 32 

CompareGenomeQualities tool usage 33 

Our tool makes use of multiple programming languages and bioinformatics software [1]. To 34 

facilitate usage, we provide a bash script that can install the required dependencies using 35 

Bioconda [2]. We also provide our tool and all its dependencies as a Docker image [3]. Below, 36 

we first provide an overview of our tool’s command-line parameters. We then present example 37 

usage of the tool. 38 

Overview of command-line parameters 39 

-b, --busco-lineage One of the 193 BUSCO v5 datasets listed here: 40 

https://busco-data.ezlab.org/v5/data/lineages. The 41 

dataset is automatically downloaded. Dataset name 42 

can be a partial match e.g., insecta instead of 43 

insecta_odb10.2020-09-10.tar.gz. Required unless  44 

--rank-only is specified. 45 

-g, --genome-size Expected or estimated genome size in base pairs. 46 

Required unless --rank-only is specified. 47 

-1, --illumina-R1 Forward Illumina reads. Required unless --rank-only 48 

is specified. 49 

-2, --illumina-R2 Reverse Illumina reads. Required unless --rank-only 50 

is specified. 51 

-n, --num-cpus Used for read mapping and BUSCO steps. Default: 1. 52 

-o, --output-dir Output directory. Not applicable if --rank-only is 53 

specified. Default: /mnt/compare-genome-qualities-54 

yyyy-mm-dd-hhmmss. 55 

--rank-only Don't compute metrics. Only rank assemblies based 56 

on tabular files in the given directory. 57 

-h, --help   View this message docker run  58 
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Example usage of the tool  59 

There are two ways to run the tool. The default behavior is to run the tool on a series of genome 60 

assemblies, providing a set of Illumina reads as additional input. This will compute the 61 

assembly quality metrics NG50, BUSCO score, resolved length, and solid Illumina read pairs 62 

and subsequently rank the assemblies. 63 

compare-genome-qualities.sh -g 450000000 -b insecta_odb9 -1 64 

illumina_R1.fq.gz -2 illumina_R2.fq.gz assembly_1.fa assembly_2.fa 65 

assembly_3.fa 66 

Alternatively, our tool can be used to rank genome assemblies based on pre-computed 67 

metrics. The pre-computed metrics are presented to the tool in form of tabular files, one file 68 

per metric, each file containing one line per assembly indicating the assembly identifier and 69 

the value of the metric for that assembly, separated by the tab character. 70 

compare-genomes-qualities.sh --rank-only dir_containing_tabular_files 71 

Comparison of Canu, flye, and wtdbg2 genome assemblers 72 

Our tool does not require the genome assemblies to be generated using different parameter 73 

combinations. For example, we present a comparison of the assemblies generated by three 74 

different long-read genome assembly tools: Canu [4], flye [5], and wtdbg2 [6] (Table S5). All 75 

assemblies were generated using default parameters of the assembly software. We removed 76 

unresolved haplotigs from Canu assembly [7] to get a better sense of resolved assembly 77 

lengths, but we did not polish any of the assemblies. In this example, wtdbg2 generated the 78 

most contiguous assembly. However, the assembly generated by Canu had the most resolved 79 

regions (13 Mb more than the next best) and considerably higher proportion of solidly mapped 80 

Illumina reads (57.62% compared to 55.25% of the runner up), followed by Flye. The 0.01% 81 

difference in the BUSCO score [8] of Canu and Flye assemblies is minor and likely to be 82 

eliminated by subsequent polishing steps. These results validate our choice of using Canu for 83 
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assembly parameter optimization and further highlight the benefits of testing different 84 

assembly software for a given dataset.  85 

Quality control of Illumina reads 86 

We filtered and trimmed Illumina datasets prior to use. First, we removed optical duplicates 87 

using clumpify.sh (version 37) [9]. Second, we removed reads with mean quality threshold 88 

lower than 15 using htqc [10]. Third, we compared the mean base quality per cycle, per tile to 89 

the mean base quality of that cycle across all tiles to test for air-bubbles becoming trapped in 90 

the flow cell [11]. For this, we obtained the difference between per-cycle mean base quality 91 

for a tile and the per-cycle mean base quality for all tiles from FastQC’s text output (version 92 

0.11.5) [12]. Where this difference was greater than 4, we changed the corresponding base in 93 

the reads to ‘N’. This was done by creating a BED file of positions from the tile and cycle 94 

information and then using seqtk (version 1.2) [13] to convert bases at the positions specified 95 

in the file. Next, we considered that reads with multiple occurrences of low-quality bases may 96 

be problematic. To eliminate such reads, we turned bases with quality scores lower than 12 97 

to ‘N’ using seqtk (reads with excessive Ns are removed in the next step). Finally, we used 98 

cutadapt (version 1.13) [14] to trim adapter sequences, to trim low quality bases from both the 99 

3' and 5’ ends, to trim any leading and trailing ‘N’s, to eliminate after trimming reads shorter 100 

than 50 bp and those with more than 4 ‘N’s. For the Illumina sequences used for assembly 101 

comparison, we retained 64,850,542 pairs of 50-150 bp reads (i.e., 79.23% of sequenced 102 

bases) after filtering. 103 
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Supplementary figures 104 

Figure S1: Histogram of lengths of raw Pacbio reads. The black vertical line shows N50 read 105 

length (8,876 bp). 106 
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Figure S2: Lengths of the assembled sequences of the best assembly (x axis) and their 107 

average read depths (y axis) A) before scaffolding B) and after. In panel B, the sequences 108 

longer than 10 Mb (colored red) are the chromosomes, while the cloud of sequences on the 109 

left are unplaced contigs. Axes are log scaled. Pacbio reads were mapped to the best 110 

assembly using minimap2 (version 2.17; -a -x map-pb) [15]. Read depth of contigs were 111 
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calculated using mosdepth (version 0.2.6; -x -n) [16]. Contigs with average depth higher than 112 

twice the median coverage (36x) are likely to contain collapsed representation of highly 113 

repetitive regions of the genome. Contigs with average depth lower than 5x are likely to contain 114 

higher amounts of sequencing error. This is because the SMRTLinks polishing step, which is 115 

critical for Canu assemblies, excludes regions with coverage lower than 5x. 116 

Figure S3: Correlations between the four metrics of genome quality: NG50, BUSCO score, 117 

resolved length, and solid Illumina read pairs. Each panel shows the values taken by a pair of 118 

metrics on the x and the y axes, and Spearman’s rank correlation coefficient (⍴) between the 119 

metrics. To account for the general correlation across metrics, the overall ranking of 120 

assemblies performed by CompareGenomeQualities is weighted by the complement of the 121 

average pairwise correlations (Fig 1). 122 
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Figure S4: Dotplot comparison of the fire ant genome assembly we present here (x axis) 123 

against a previously published draft fire ant genome [17] (y axis). The x axis represents the 124 

16 fire ant chromosomes in the presented assembly and the y axis represents matching 125 

sequences in the draft assembly. The assemblies were aligned using minimap2 (version 2.17; 126 

-c -P -k19 -w19 -m200) [15] and visualized using dotPlotly (version 11744849; -m 100000) 127 

[18]. Most breaks in collinearity are along the x axis. The spacing between diagonals shows 128 

how ambiguous regions of the genome that are absent from the previous genome assembly 129 

were identified and included in the new assembly. 130 
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Figure S5: Estimated error rates of corrected reads (y axis) against error rate of raw reads (x 131 

axis). Shape of the points indicate the stringency of trimming raw reads. Each of the 15 points 132 

represents corrected reads obtained by changing the raw error rate threshold and trimming 133 

stringency genome assembly parameters used for this study.  134 
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Figure S6: Coverage density plot of the best assembly before (left) and after removing 135 

unresolved haplotigs (right). The removal of these unresolved haplotigs clearly reduces the 136 

among of contigs with less than half the median coverage (i.e., less than 18x).  137 
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Figure S7: We modelled the overall assembly rank as a function of the three assembly 138 

parameters: error rate threshold for raw reads, stringency of trimming raw reads, error rate 139 

threshold for corrected reads). The error rate threshold for corrected and for raw reads were 140 

significant p < 10-5 and p < 0.05 respectively.  141 
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Figure S8: Proportion of individuals genotyped per site from RAD sequencing of seven fire 142 

ant families (M013 - P034; names beginning with M are monogynous colonies and those 143 

beginning with P are polygynous colonies) that has single nucleotide polymorphism in the 144 

family (x axis) against proportion of homozygous individuals for that site (y axis). 145 
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Figure S9: Site statistics obtained from RAD sequencing of seven fire ant families (M013 - 146 

P034; names beginning with M are monogynous colonies and those beginning with P are 147 

polygynous colonies). Black vertical line shows the threshold chosen for each family for 148 

filtering during linkage map construction. A) Number of individuals genotyped per site (x axis) 149 
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against their count (y axis). B) Mean read depth of genotypes per site (x axis) against their 150 

count (y axis). C) Mean genotype quality per site (x axis) against their count (y axis). D) Minor 151 

allele frequency per site (x axis) against their count (y axis) (continued on next page) 152 

Figure S9 (continued) 153 
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Supplementary tables 154 

Table S1: Additional file 2 155 

Table S2: Additional file 3 156 

Table S3: Additional file 4 157 

Table S4: Polishing and haplotype removal improves assembly accuracy 158 

 Raw 
contigs 

After 
Pacbio 
polishing  

After 
further 
Illumina 
polishing  

After further 
haplotype-
filtering 

General error rate 1.34 1.30 1.26 - 
% Illumina reads with insertion 6.48% 3.91% 1.79% - 
% Illumina reads with deletion 2.75% 2.82% 2.19% - 
Mean mapping quality of Illumina reads 25.73 27.49 28.24 - 
% Complete benchmarking universal 
single-copy orthologs (BUSCO, lineage 
insecta, n=1664) 

98% 98.8% 99% 98.8% 

Table S5: Comparison of Canu, Flye, and wtdbg2 genome assemblers 159 

 Resolved length NG50 BUSCO 
score 

Solid Illumina 
read pairs 

Canu + purge_haplotigs 366,814,754 bp 441,945 bp 96.4% 57.62% 
Flye 353,678,069 bp 402,671 bp 96.5% 55.25% 
Wtdbg2 320,860,502 bp 502,081 bp 68.6% 48.12% 
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